

(06 Marks)

(06 Marks)

b. Construct a quaternary Huffman code for the following set of message symbols with respective probabilities :

	А	В	С	D	E	F	G	Н			
	0.22	0.2	0.18	0.15	0.1	0.08	0.05	0.02			
v and redundancy											

Also find efficiency and redundancy.

5 a.

b.

c. Explain steps in Shannon's encoding algorithm for generating Binary codes. (05 Marks)

Module-3

For the JPN	A give	n, find	all the	entropie	s.	
	0.05	0	0.20	0.05	/: #	
$\mathbf{D}(\mathbf{r}, \mathbf{r}) =$	0	0.10	0.10	0		(06 Marks)
P(x, y) =	0	0	0.20	0.10	5	
	0.05	0.05	0	0.10	6. ⁴	
Show that 1	H(X, Y	() = H(X/Y) +	H(Y).		(04 Marks)

c. For the channel matrix given, find the capacity of the channel. $P(Y/X) = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.2 & 0.2 & 0.6 \end{bmatrix}.$

OR

6 a. For the channel matrix given, find the missing entries. Also draw the corresponding channel diagram.

$$P(Y/X) = \begin{bmatrix} 0.8 & * & 0.2 \\ * & 0.6 & 0.2 \\ 0.2 & 0.3 & * \end{bmatrix}.$$
 (04 Marks)

b. Noise matrix of a binary symmetric channel is illustrated below which has following source symbol probabilities :

$$P(x_1) = \frac{2}{3}, \quad P(x_2) = \frac{1}{3} \qquad P(Y|X) = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}$$

Determine H(X), H(Y), H(X, Y), H(Y/X) and I(X, Y). (08 Marks)

- ii) Determine Channel capacity.
- c. Show that H(X, Y) = H(Y/X) + H(X).

Module-4

7 For the following (6, 3) systematic LBC.

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- i) Find all code vectors.
- ii) Draw encoder circuit for above code.
- iii) Find minimum Hamming weight.
- iv) Find error detecting and error correcting capability.
- v) Draw syndrome calculation circuit.
- vi) Find syndrome of received vector (101111) and correct error if any.

(04 Marks)

OR

$$[\mathbf{P}] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- i) Find all possible code vectors.
- ii) Draw corresponding encoder and syndrome calculation circuit.
- iii) Detect and correct the single bit error in following received vectors :
- $R_A = [0\ 1\ 1\ 1\ 1\ 1\ 0]$; $R_B = [1\ 0\ 1\ 1\ 1\ 0\ 0]$; $R_C = [1\ 0\ 1\ 0\ 0\ 0\ 0]$.
- b. Define Hamming weight, Hamming distance and Minimum distance of LBC with examples. (04 Marks)

Module-5

- 9 Consider (3, 1, 2) convolution code with $g^{(1)} = (110)$, $g^{(2)} = (101)$, $g^{(3)} = (111)$.
 - i) Find constraint length.
 - ii) Find the rate.
 - iii) Draw encoder block diagram.
 - iv) Find generator matrix.
 - v) Find codeword for message sequence (11101) using time domain approach.
 - vi) Repeat (v) using transfer domain approach.

(16 Marks)

(12 Marks)

OR

10 a. Write short notes on Golay codes and BCH codes.

(08 Marks)

b. Consider a (2, 1, 2) convolution code with generator polynomial g₁(101) and g₂(011). Draw encoder diagram. Find encoded sequence for input (101101) using time domain and transfer domain approach. (08 Marks)